PREPARATION OF α-METHYLENE KETONES BY THE PALLADIUM-CATALYZED DECARBOXYLATION-DEACETOXYLATION OF ALLYL α-ACETOXYMETHYL-β-KETO CARBOXYLATES UNDER MILD CONDITIONS

Jiro TSUJI*, Mohammad NISAR, and Ichiro MINAMI Tokyo Institute of Technology, Meguro, Tokyo 152, Japan.

Summary; α -Methylene ketones are prepared in high yields by the palladiumcatalyzed decarboxylation-deacetoxylation of allyl α -acetoxymethyl- β -keto carboxylates. The reaction proceeds rapidly at room temperature under neutral conditions in acetonitrile.

 α -Methylene ketones are present in some natural products which exhibit high anti-tumor activity, and their efficient synthetic methods are strongly desirable. α -Methylene ketones are highly reactive and undergo facile Michaeltype reaction, and hence their preparation in high yields must be carried out under extremely mild conditions. A number of preparative methods are known.¹ However, further improvement is still required in these reactions, particulary in their yields. We now wish to report a new preparative method for α -methylene ketones in high yields under extremely mild conditions. We have been working on the palladium-catalyzed reactions of allyl β -keto carboxylates, and discovered three reactions, namely, 1. intramolecular decarboxylation-allylation to give α -allyl ketones,^{2,3)} 2. decarboxylation-dehydrogenation to give α,β -unsaturated ketones,^{4,5)} and 3. decarboxylation-hydrogenolysis to give α alkyl ketones.⁶⁾ In our continuing work on the palladium-catalyzed reactions of allyl β -keto carboxylates, we have discovered a new preparative method for α -methylene ketones 3 from allyl α -acetoxymethyl- β -keto carboxylates 2. As shown in the following scheme, the present method is based on the three-step reactions starting from allyl β -keto carboxylates.

As the first step, hydroxymethyl group was introduced into allyl β -keto carboxylates 1 by the reaction with aqueous formaldehyde using KHCO₃ as a base. The reaction proceeds nearly quantitatively, and is much better than the reaction of formaldehyde with simple ketones. Then the hydroxy group was ace-tylated to give allyl α -acetoxymethyl- β -keto carboxylates 2. Finally, 2 were treated with a Pd₂(dba)₃·CHCl₃-PPh₃ catalyst in acetonitrile at 20-25^oC. The

reaction proceeds rapidly and α -methylene ketones 3 were obtained in high yields:

<SCHEME 1>

a) H_2CO , $KHCO_3/H_2O$ -allyl alcohol-THF b) Ac_2O , Py. c) $Pd_2(dba)_3 \cdot CHCl_3$, $PPh_3/MeCN$, $20-25^{O}C$

Some results are shown in <Table 1>. Acetonitrile is the best solvent for this reaction. In THF, α -allyl ketone 9 was obtained as a minor product.^{2,3}) Other predictable by-products, enones 10 or 11, formed by β -hydrogen elimination from 7⁴⁻⁶) were not obtained at all. As for the leaving group, carbonates and benzoate are also acceptable ones. But methoxy and hydroxy groups are not suitable, which give α -allyl ketones as major products.

Generally reactions were carried out in the following way; A solution of 2 (1 mmol), $Pd_2(dba)_3$ CHCl₃ (0.05 mmol), and PPh_3 (0.2 mmol) in acetonitrile (5 mL) was stirred for 10-20 min at 20-25 °C under argon. After the reaction was complete (TLC and GLC analyses), α -methylene ketones were isolated by column chromatography on silica gel, preparative GLC, or distillation.

<SCHEME 2>

<TABLE 1> PREPARATION OF α-METYLENE KETONES

a) Isolated yields. GLC yields in parentheses. b) α -Allyl ketone was obtained (94%). c) α -Allyl ketone was obtained (72%).

The reaction can be explained by the following mechanism. Oxidative addition of allyl α -acetoxymethyl- β -keto carboxylates 2 to Pd(0) followed by decarboxylation affords (π -allyl)palladium enolate complex 6, which is in equilibrium with C-bonded complex 7. Then elimination of α -acetoxy group takes place to give α -methylene ketones 3 and (π -allyl)palladium acetate complex 8. Finally, reductive elimination gives allyl acetate and regenerates the Pd(0) species. As a supporting evidence, allyl benzoate was obtained in 93% yield by the palladium-catalyzed reaction of allyl α -benzoxymethyl- β -keto carboxylate 5. <SCHEME 3>

The present method offers a facile and efficient preparative method for α -methylene ketones. Application of this enone formation to syntheses of natural products is in progress.

ACKNOWLEDGMENT:

This research was financially supported by the Grant-in-Aids for Developmental Scientific Research, No. 60850153 and Encouragement of Young Scientist, No. 60790051 from the Ministry of Education, Science and Culture.

REFERENCES

1)	For example,
	G. M. Ksander, J. E. McMurry, and M. Johnson, J. Org. Chem., 42, 1180
	(1977).
	J. M. Cassady, S. R. Byrn, I. K. Stamos, S. M. Evans, and A. McKenzie,
	J. Med. Chem., 21, 815 (1978).
	L. Fleming and J. Goldhill, J. Chem. Soc. Perkin Trans. I, 1980, 1493.
	B. W. Disanayaka and A. C. Weedon, Synthesis, 1983, 952.
	E. Block, M. Aslam, R. Iyer, and J. Hutchinson, J. Org. Chem., 49, 3664
	(1984). And refernces cited therein.
2)	I. Shimizu, T. Yamada, and J. Tsuji, Tetrahedron Lett, 21, 3199
	(1980).
3)	T. Tsuda, Y. Chujo, S. Nishi, K. Tawara, and T. Saegusa, J. Am. Chem.
	Soc., 102, 6381 (1980).
4)	I. Shimizu and J. Tsuji, J. Am. Chem. Soc., 104, 5844 (1982).
5)	J. Tsuji, I. Minami, I. Shimizu, H. Kataoka, Chem. Lett., 1984 , 1133.
6)	J. Tsuji, M. Nisar, and I. Shimizu, J. Org. Chem., 50, 3416 (1985).

(Received in Japan 18 March 1986)